frex.models package

Subpackages

Submodules

frex.models.candidate module

class frex.models.candidate.Candidate(context: Any, domain_object: frex.models.domain_object.DomainObject, applied_explanations: List[frex.models.explanation.Explanation], applied_scores: List[float])[source]

Bases: object

A Candidate should store some context for the current application, a domain-specific object (that is, the candidate to return as part of the recommendation), and lists of applied explanations and scores. We expect applied explanations and scores to always have the same length, as pipeline stages should apply both when they are passed through.

applied_explanations: List[frex.models.explanation.Explanation]
applied_scores: List[float]
context: Any
domain_object: frex.models.domain_object.DomainObject
classmethod from_dict(kvs: Optional[Union[dict, list, str, int, float, bool]], *, infer_missing=False) dataclasses_json.api.A
classmethod from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) dataclasses_json.api.A
classmethod schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) dataclasses_json.mm.SchemaF[dataclasses_json.mm.A]
to_dict(encode_json=False) Dict[str, Optional[Union[dict, list, str, int, float, bool]]]
to_json(*, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Optional[Union[int, str]] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) str
property total_score: float

Get the sum of scores in applied_scores for this candidate. :return: The sum of self.applied_scores

frex.models.domain_object module

class frex.models.domain_object.DomainObject(uri: rdflib.term.URIRef)[source]

Bases: object

DomainObject is the base class for objects related to a recommendation application that have some URI.

classmethod from_dict(kvs: Optional[Union[dict, list, str, int, float, bool]], *, infer_missing=False) dataclasses_json.api.A
classmethod from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) dataclasses_json.api.A
classmethod schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) dataclasses_json.mm.SchemaF[dataclasses_json.mm.A]
to_dict(encode_json=False) Dict[str, Optional[Union[dict, list, str, int, float, bool]]]
to_json(*, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Optional[Union[int, str]] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) str
uri: rdflib.term.URIRef

frex.models.explanation module

class frex.models.explanation.Explanation(explanation_string: str)[source]

Bases: object

An Explanation in its most simple form consists of a string.

More complex explanations can be defined by subclassing this Explanation class.

explanation_string: str
classmethod from_dict(kvs: Optional[Union[dict, list, str, int, float, bool]], *, infer_missing=False) dataclasses_json.api.A
classmethod from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) dataclasses_json.api.A
classmethod schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) dataclasses_json.mm.SchemaF[dataclasses_json.mm.A]
to_dict(encode_json=False) Dict[str, Optional[Union[dict, list, str, int, float, bool]]]
to_json(*, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Optional[Union[int, str]] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) str

Module contents