frex.models.explanation_types package

Submodules

frex.models.explanation_types.case_based_explanation module

class frex.models.explanation_types.case_based_explanation.CaseBasedExplanation(explanation_string: str, based_on_case: frex.models.domain_object.DomainObject)[source]

Bases: frex.models.explanation.Explanation

An Explanation based on a prior case that is similar to the current case for which an explanation is being produced.

based_on_case: frex.models.domain_object.DomainObject
classmethod from_dict(kvs: Optional[Union[dict, list, str, int, float, bool]], *, infer_missing=False) dataclasses_json.api.A
classmethod from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) dataclasses_json.api.A
classmethod schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) dataclasses_json.mm.SchemaF[dataclasses_json.mm.A]
to_dict(encode_json=False) Dict[str, Optional[Union[dict, list, str, int, float, bool]]]
to_json(*, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Optional[Union[int, str]] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) str

frex.models.explanation_types.contextual_explanation module

class frex.models.explanation_types.contextual_explanation.ContextualExplanation(explanation_string: str, based_on_context: Any)[source]

Bases: frex.models.explanation.Explanation

An Explanation based on the context in which a recommendation was produced.

based_on_context: Any
classmethod from_dict(kvs: Optional[Union[dict, list, str, int, float, bool]], *, infer_missing=False) dataclasses_json.api.A
classmethod from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) dataclasses_json.api.A
classmethod schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) dataclasses_json.mm.SchemaF[dataclasses_json.mm.A]
to_dict(encode_json=False) Dict[str, Optional[Union[dict, list, str, int, float, bool]]]
to_json(*, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Optional[Union[int, str]] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) str

frex.models.explanation_types.contrastive_explanation module

class frex.models.explanation_types.contrastive_explanation.ContrastiveExplanation(explanation_string: str, based_on_fact: Any, based_on_foil: Any)[source]

Bases: frex.models.explanation.Explanation

An Explanation based on making a contrast between factors that influenced the system producing one recommendation over another.

E.g., if an explanation is being produced to answer a question like “Why recommendation A instead of recommendation B?”, then the contrastive explanation should describe a factor that positively influenced choosing recommendation A and a factor that negatively influenced choosing B.

based_on_fact: Any
based_on_foil: Any
classmethod from_dict(kvs: Optional[Union[dict, list, str, int, float, bool]], *, infer_missing=False) dataclasses_json.api.A
classmethod from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) dataclasses_json.api.A
classmethod schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) dataclasses_json.mm.SchemaF[dataclasses_json.mm.A]
to_dict(encode_json=False) Dict[str, Optional[Union[dict, list, str, int, float, bool]]]
to_json(*, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Optional[Union[int, str]] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) str

frex.models.explanation_types.counterfactual_explanation module

class frex.models.explanation_types.counterfactual_explanation.CounterfactualExplanation(explanation_string: str, alternative_input: Any, alternative_output: frex.models.domain_object.DomainObject)[source]

Bases: frex.models.explanation.Explanation

An Explanation pertaining to how the recommendation output would be different if the inputs to the system were changed.

alternative_input: Any
alternative_output: frex.models.domain_object.DomainObject
classmethod from_dict(kvs: Optional[Union[dict, list, str, int, float, bool]], *, infer_missing=False) dataclasses_json.api.A
classmethod from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) dataclasses_json.api.A
classmethod schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) dataclasses_json.mm.SchemaF[dataclasses_json.mm.A]
to_dict(encode_json=False) Dict[str, Optional[Union[dict, list, str, int, float, bool]]]
to_json(*, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Optional[Union[int, str]] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) str

frex.models.explanation_types.scientific_explanation module

class frex.models.explanation_types.scientific_explanation.ScientificExplanation(explanation_string: str, based_on_evidence: Any)[source]

Bases: frex.models.explanation.Explanation

An Explanation based on the results of some rigorous scientific methods or evidence in literature.

based_on_evidence: Any
classmethod from_dict(kvs: Optional[Union[dict, list, str, int, float, bool]], *, infer_missing=False) dataclasses_json.api.A
classmethod from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) dataclasses_json.api.A
classmethod schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) dataclasses_json.mm.SchemaF[dataclasses_json.mm.A]
to_dict(encode_json=False) Dict[str, Optional[Union[dict, list, str, int, float, bool]]]
to_json(*, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Optional[Union[int, str]] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) str

frex.models.explanation_types.simulation_based_explanation module

class frex.models.explanation_types.simulation_based_explanation.SimulationBasedExplanation(explanation_string: str, simulation_inputs: Any, simulation_result: Any)[source]

Bases: frex.models.explanation.Explanation

An Explanation that describes the results that would emerge if a given recommendation or procedure were followed.

classmethod from_dict(kvs: Optional[Union[dict, list, str, int, float, bool]], *, infer_missing=False) dataclasses_json.api.A
classmethod from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) dataclasses_json.api.A
classmethod schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) dataclasses_json.mm.SchemaF[dataclasses_json.mm.A]
simulation_inputs: Any
simulation_result: Any
to_dict(encode_json=False) Dict[str, Optional[Union[dict, list, str, int, float, bool]]]
to_json(*, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Optional[Union[int, str]] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) str

frex.models.explanation_types.statistical_explanation module

class frex.models.explanation_types.statistical_explanation.StatisticalExplanation(explanation_string: str, based_on_numerical_evidence_value: float, based_on_numerical_evidence_target: Any)[source]

Bases: frex.models.explanation.Explanation

An Explanation based on data about the likelihood of an occurrence or situation.

based_on_numerical_evidence_target: Any
based_on_numerical_evidence_value: float
classmethod from_dict(kvs: Optional[Union[dict, list, str, int, float, bool]], *, infer_missing=False) dataclasses_json.api.A
classmethod from_json(s: Union[str, bytes, bytearray], *, parse_float=None, parse_int=None, parse_constant=None, infer_missing=False, **kw) dataclasses_json.api.A
classmethod schema(*, infer_missing: bool = False, only=None, exclude=(), many: bool = False, context=None, load_only=(), dump_only=(), partial: bool = False, unknown=None) dataclasses_json.mm.SchemaF[dataclasses_json.mm.A]
to_dict(encode_json=False) Dict[str, Optional[Union[dict, list, str, int, float, bool]]]
to_json(*, skipkeys: bool = False, ensure_ascii: bool = True, check_circular: bool = True, allow_nan: bool = True, indent: Optional[Union[int, str]] = None, separators: Optional[Tuple[str, str]] = None, default: Optional[Callable] = None, sort_keys: bool = False, **kw) str

Module contents